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ABSTRACT: 

 

Constraint optimization problems are encountered in numerous applications. There are 

different areas like Engineering design, structural optimization, VLSI design, economics & 

allocation problem can be applicable constraint optimization problem approach. In this 

present paper we have developed advance solution approach through extended Saddle points, 

Lagrange multipliers and penalty methods for solving constrained-optimization problems. 

Here studies some new theorems have been stated and simple proofs have been given. The 

method can be directly used to solve practical problems.   
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INTRODUCTION 

1.1 Constraint optimization problem can be defined as a regular constraint satisfaction 

problem augmented with a number of "local" cost functions. The aim of constraint 

optimization is to find a solution to the problem whose cost, evaluated as the sum of the cost 

functions, is maximized or minimized. The regular constraints are called hard constraints, 

while the cost functions are called soft constraints. These names illustrate that hard 

constraints are to be necessarily satisfied, while soft constraints only express a preference of 

some solutions (those having a high or low cost) over other ones (those having lower/higher 

cost). 

A general constrained optimization problem may be written as follows: 

                      

Where  is a vector residing in a n-dimensional space,  is a scalar valued objective 

function,  and  are 

constraint functions that need to be satisfied. 

Constrained optimization problems: which are subject to one or more constraints.  
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Unconstrained optimization problems: in which no constraints exist. 

1.2 Classification of Optimization Problem 

1.2.1 In the first category the objective is to find a set of design parameters that makes a 

prescribed function of these parameters minimum or maximum subject to certain constraints. 

For example to find the minimum weight design of a strip footing with two loads shown in 

Fig 1 (a) subject to a limitation on the maximum settlement of the structure can be stated as 

follows.   

Find X  = 
d

b
 which minimizes 

f(X) = h(b,d) 

Subject to the constraints         (s X ) max ; b  0 ; d  0  

where s  is the settlement of the footing. Such problems are called parameter or static 

optimization problems.  

It may be noted that, for this particular example, the length of the footing (l), the loads P1 and 

P2 and the distance between the loads are assumed to be constant and the required 

optimization is achieved by varying b and d.  

1.2.2 In the second category of problems, the objective is to find a set of design parameters, 

which are all continuous functions of some other parameter that minimizes an objective 

function subject to a set of constraints. If the cross sectional dimensions of the rectangular 

footings are allowed to vary along its length as shown in Fig 1 (b), the optimization problem 

can be stated as :   

Find X(t)  = 
)(

)(

td

tb
 which minimizes 

f(X) = g( b(t), d(t) ) 

Subject to the constraints  

(s X(t) ) max     0  t  l 

          b(t)  0         0  t  l 

          d(t)  0         0  t  l 

The length of the footing (l) the loads P1 and P2 , the distance between the loads are assumed 

to be constant and the required optimization is achieved by varying b and d along the length l. 



                International Journal of Multidisciplinary Approach                                     

                          and Studies                                          ISSN NO:: 2348 – 537X     

                          

 
 

 
 

Volume 01, No.1, Feb.2014 

  

 

P
ag

e 
 : 
3

8
 

Here the design variables are functions of the length parameter t. this type of problem, where 

each design variable is a function of one or more parameters, is known as trajectory or 

dynamic optimization problem.  

 

                                (a)              (b) 

                                                     Figure 1 

1.3 Classification based on the physical structure of the problem 

Based on the physical structure, optimization problems are classified as optimal control and 

non-optimal control problems.  

(i) Optimal control problems 

An optimal control (OC) problem is a mathematical programming problem involving a 

number of stages, where each stage evolves from the preceding stage in a prescribed manner. 

It is defined by two types of variables: the control or design and state variables. The control 

variables define the system and controls how one stage evolves into the next. The state 

variables describe the behavior or status of the system at any stage. The problem is to find a 

set of control variables such that the total objective function (also known as the performance 

index, PI) over all stages is minimized, subject to a set of constraints on the control and state 

variables. An OC problem can be stated as follows:  

Find X  which minimizes f(X) = ),(
1

ii

l

i

i yxf  

Subject to the constraints 

1),( iiiii yyyxq     i = 1, 2, …., l 

0)( jj xg ,   j = 1, 2, …., l 

0)( kk yh ,   k = 1, 2, …., l 

l l 

P1 

P2 

d 

b 

P2 

P1 

b(t) 

d(t) 

t 
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Where xi is the ith control variable, yi is the ith state variable, and fi is the contribution of the 

ith stage to the total objective function. gj, hk, and qi are the functions of xj, yj ; xk, yk  and xi and 

yi, respectively, and l  is the total number of states. The control and state variables xi and yi 

can be vectors in some cases.  

(ii) Problems which are not optimal control problems are called non-optimal control 

problems. 

VARIOUS SOLUTION METHOD 

2.1 Branch and bound Method 

2.1.1 Constraint optimization can be solved by branch and bound algorithms. These are 

backtracking algorithms storing the cost of the best solution found during execution and use it 

for avoiding part of the search [1]. More precisely, whenever the algorithm encounters a 

partial solution that cannot be extended to form a solution of better cost than the stored best 

cost, the algorithm backtracks, instead of trying to extend this solution. 

2.1.2 Assuming that cost is to be maximized, the efficiency of these algorithms depends on 

how the cost that can be obtained from extending a partial solution is evaluated. Indeed, if the 

algorithm can backtrack from a partial solution, part of the search is skipped. The lower the 

estimated cost, the better the algorithm, as a lower estimated cost is more likely to be lower 

than the best cost of solution found so far. 

On the other hand, this estimated cost cannot be lower than the effective cost that can be 

obtained by extending the solution, as otherwise the algorithm could backtrack while a 

solution better than the best found so far exists. As a result, the algorithm requires an upper 

bound on the cost that can be obtained from extending a partial solution, and this upper 

bound should be as small as possible. 

2.2 First-choice bounding functions  

One way for evaluating this upper bound for a partial solution is to consider each soft 

constraint separately. For each soft constraint, the maximal possible value for any assignment 

to the unassigned variables is assumed. The sum of these values is an upper bound because 

the soft constraints cannot assume a higher value. It is exact because the maximal values of 

soft constraints may derive from different evaluations: a soft constraint may be maximal 

for  while another constraint is maximal for . 

2.3 Russian doll search  

http://en.wikipedia.org/wiki/Branch_and_bound
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This method runs a branch-and-bound algorithm on  problems, where  is the number of 

variables. Each such problem is the sub problem obtained by dropping a sequence of 

variables  from the original problem, along with the constraints containing them. 

After the problem on variables  is solved, its optimal cost can be used as an 

upper bound while solving the other problems, 

In particular, the cost estimate of a solution having  as unassigned variables 

is added to the cost that derives from the evaluated variables [2]. Virtually, this corresponds 

on ignoring the evaluated variables and solving the problem on the unassigned ones, except 

that the latter problem has already been solved. More precisely, the cost of soft constraints 

containing both assigned and unassigned variables is estimated as above (or using an 

arbitrary other method); the cost of soft constraints containing only unassigned variables is 

instead estimated using the optimal solution of the corresponding problem, which is already 

known at this point. 

2.4 Bucket elimination  

2.4.1 The bucket elimination algorithm can be adapted for constraint optimization. A given 

variable can be indeed removed from the problem by replacing all soft constraints containing 

it with a new soft constraint. The cost of this new constraint is computed assuming a maximal 

value for every value of the removed variable. Formally, if  is the variable to be 

removed,  are the soft constraints containing it, and  are their 

variables except , the new soft constraint is defined by: 

 

2.4.2 Bucket elimination [3] works with an (arbitrary) ordering of the variables. Every 

variable is associated a bucket of constraints; the bucket of a variable contains all constraints 

having the variable has the highest in the order. Bucket elimination proceed from the last 

variable to the first. For each variable, all constraints of the bucket are replaced as above to 

remove the variable. The resulting constraint is then placed in the appropriate bucket. 

The bucket elimination algorithm can be adapted for constraint optimization. A given 

variable can be indeed removed from the problem by replacing all soft constraints containing 

it with a new soft constraint. The cost of this new constraint is computed assuming a maximal 

value for every value of the removed variable. Formally, if  is the variable to be 

http://en.wikipedia.org/wiki/Bucket_elimination
http://en.wikipedia.org/wiki/Bucket_elimination
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removed,  are the soft constraints containing it, and  are their 

variables except , the new soft constraint is defined by: 

 

2.4.3 Bucket elimination works with an (arbitrary) ordering of the variables. Every variable is 

associated a bucket of constraints; the bucket of a variable contains all constraints having the 

variable has the highest in the order. Bucket elimination proceed from the last variable to the 

first. For each variable, all constraints of the bucket are replaced as above to remove the 

variable. The resulting constraint is then placed in the appropriate bucket. 

2.5 Distributed constraint optimization  

(DCOP or DisCOP) is the distributed analogue to constraint optimization. A DCOP is a 

problem in which a group of agents must distributed choose values for a set of variables such 

that the cost of a set of constraints over the variables is either minimized or maximized. 

Distributed Constraint Satisfaction is a framework for describing a problem in terms of 

constraints that are known and enforced by distinct participants (agents). The constraints are 

described on some variables with predefined domains, and have to be assigned to the same 

values by the different agents. 

2.6 Penalty function methods  

Power methods are a certain class of algorithms for 

solving constrained optimization problems [4]. A penalty method replaces a constrained 

optimization problem by a series of unconstrained problems whose solutions ideally converge 

to the solution of the original constrained problem. The unconstrained problems are formed 

by adding a term to the objective function that consists of a penalty parameter and a measure 

of violation of the constraints. The measure of violation is nonzero when the constraints are 

violated and is zero in the region where constraints are not violated.           Maximize 

)(xfZ  

  s.t. the constraint cxg )(  

The objective function to be maximized becomes  

  2
))(( cxgpZW   with p  

If cxg )(  then 2
))(( cxg  would be positive and with large p value, the objective 

function value drops precipitously. Therefore, it would be the decision maker’s advantage to 

stick to the given constraint. 

http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Constraint_optimization
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Objective_function
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Similarly, the minimization problem 

  Minimize )(xfZ  

  s.t. the constraint cxg )(  

assumes the form 

  2
))(( cxgpZW   with p  

 

After such formulation, we would obtain our results via 

  
0

p

W
    ,0

x

W   

Example.  Find the point on the parabola xy 4
2  that is closest to the point (1,0).  

In this case, the objective function that we need to minimize is  

 Min  22
)1( yxZ      

              s.t.  xy 4
2  

Using the penalty p , we seek to minimize the objective function 

 2222
)4()1( xypyxW  

This yields  
0)4(8)1(2

2 xypx
x

W  

      
0)4(42 2 xypy

y

W  

and,         
042 xy

p

W  

From the first two, we get 12yx .   Substituting this into the constraint, we get 

  048
2 yy    which gives the optimum *y  as 

 
524

2

808
*y

 = 47214.0   and 055728.0*x  

 Interior point methods (also referred to as barrier methods)  

2.7.1 Barrier methods constitute an alternative class of algorithms for constrained 

optimization. These methods also add a penalty-like term to the objective function, but in this 

case the iterates are forced to remain interior to the feasible domain and the barrier is in place 

to bias the iterates to remain away from the boundary of the feasible region [5]. Interior point 

methods are a certain class of algorithms to solve linear and nonlinear convex 

optimization problems. 

http://en.wikipedia.org/wiki/Barrier_method_(mathematics)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Convex_optimization
http://en.wikipedia.org/wiki/Convex_optimization
http://en.wikipedia.org/wiki/Convex_optimization
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                                                                     Figure 2 

2.7.2 The interior point method was invented by John von Neumann. Von Neumann 

suggested a new method of linear programming, using the homogeneous linear system of 

Gordan  which was later popularized by Karmarkar's algorithm, developed by Narendra 

Karmarkar in 1984 for linear programming [6]. The method consists of a self-

concordant barrier function used to encode the convex set. Contrary to thesimplex method, it 

reaches an optimal solution by traversing the interior of the feasible region. Any convex 

optimization problem can be transformed into minimizing (or maximizing) a linear 

function over a convex set by converting to theepigraph form. The idea of encoding 

the feasible set using a barrier and designing barrier methods was studied in the early 1960s 

by, amongst others, Anthony V. Fiacco and Garth P. McCormick. These ideas were mainly 

developed for general nonlinear programming, but they were later abandoned due to the 

presence of more competitive methods for this class of problems (e.g. sequential quadratic 

programming). 

2.7.3 Yurii Nesterov and Arkadi Nemirovski came up with a special class of such barriers 

that can be used to encode any convex set. They guarantee that the number of iterations of the 

algorithm is bounded by a polynomial in the dimension and accuracy of the solution.  

Karmarkar's breakthrough revitalized the study of interior point methods and barrier 

problems, showing that it was possible to create an algorithm for linear programming 

characterized by polynomial complexity and, moreover, that was competitive with the 

simplex method. Already Khachiyan's ellipsoid method was a polynomial time algorithm; 

however, in practice it was too slow to be of practical interest. 

The class of primal-dual path-following interior point methods is considered the most 

successful. Mehrotra's predictor-corrector algorithm provides the basis for most 

implementations of this class of methods
.
 Primal-dual method's idea is easy to demonstrate 

for constrained nonlinear optimization [7].  

http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/Karmarkar%27s_algorithm
http://en.wikipedia.org/wiki/Narendra_Karmarkar
http://en.wikipedia.org/wiki/Narendra_Karmarkar
http://en.wikipedia.org/wiki/Narendra_Karmarkar
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Self-concordant
http://en.wikipedia.org/wiki/Self-concordant
http://en.wikipedia.org/wiki/Barrier_function
http://en.wikipedia.org/wiki/Convex_set
http://en.wikipedia.org/wiki/Simplex_algorithm
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/w/index.php?title=Epigraph_form&action=edit&redlink=1
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Nonlinear_programming
http://en.wikipedia.org/wiki/Sequential_quadratic_programming
http://en.wikipedia.org/wiki/Sequential_quadratic_programming
http://en.wikipedia.org/wiki/Sequential_quadratic_programming
http://en.wikipedia.org/w/index.php?title=Yurii_Nesterov&action=edit&redlink=1
http://en.wikipedia.org/wiki/Arkadi_Nemirovski
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Leonid_Khachiyan
http://en.wikipedia.org/wiki/Ellipsoid_method
http://en.wikipedia.org/wiki/Mehrotra_predictor-corrector_method
http://en.wikipedia.org/wiki/Nonlinear_optimization
http://en.wikipedia.org/wiki/File:Karmarkar.png
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2.8  Karush–Kuhn–Tucker (KKT) conditions (also known as the Kuhn–Tucker conditions) 

2.8.1 Kuhn–Tucker conditions method are first order necessary conditions for a solution 

in nonlinear programming to be optimal, provided that some regularity conditions are 

satisfied. Allowing inequality constraints, the KKT approach to nonlinear programming 

generalizes the method of Lagrange multipliers, which allows only equality constraints. The 

system of equations corresponding to the KKT conditions is usually not solved directly, 

except in the few special cases where a closed-form solution can be derived analytically. In 

general, many optimization algorithms can be interpreted as methods for numerically solving 

the KKT system of equations.  

2.8.2  The KKT conditions were originally named after Harold W. Kuhn, and Albert W. 

Tucker, who first published the conditions in 1951. Later scholars discovered that the 

necessary conditions for this problem had been stated by William Karush in his master's 

thesis in 1939 

Example: Optimise the objective function 25.025.0 yx  subject to the constraint yx 1024  

The Lagrange multiplier method: 

Step 1: The Lagrangian: 

 yxyxL 102425.025.0  

Step 2: 1025.0 25.075.0 yx
x

L
 = 0   

 75.025.025.0 yx
y

L
 = 0    

 yx
L

1024   = 0    

Step 3:  Solve the 3 simultaneous equations: 

             025.0 75.025.0 yx  

 75.025.025.0 yx  

            01025.025.0 75.025.025.075.0 yxyx  

 75.025.025.075.0 25.05.2 yxyx  

 75.025.075.025.0 25.05.2 xxyy  

 xy 25.05.2  

http://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
http://en.wikipedia.org/wiki/Nonlinear_programming
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_.28or_constraint_qualifications.29
http://en.wikipedia.org/wiki/Lagrange_multipliers
http://en.wikipedia.org/wiki/Closed-form_expression
http://en.wikipedia.org/wiki/Harold_W._Kuhn
http://en.wikipedia.org/wiki/Albert_W._Tucker
http://en.wikipedia.org/wiki/Albert_W._Tucker
http://en.wikipedia.org/wiki/Albert_W._Tucker
http://en.wikipedia.org/wiki/William_Karush
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 xy10  

 01024 yx  

 0101024 yy  

 0224 y  

 12y  

 xy10  

 x1210  

 x120   

 Optimum point at: 120x , 12y  

EXTENDED SADDLE POINT & LAGRANGE MULTIPLIERS APPROACH 

3.1 Variational problems arise in constrained minimization problems we seek a minimum of 

F subject to the constraint that the minimizers lie in a convex set K. The specification of the 

constraint on F is equivalent to specifying the constraint set K. As it is well known, constraint 

minimization problem can be reformulated as saddle point problems using the method of 

Lagrange multipliers. Such formulations sometimes may make it possible to seek minima of 

functional in linear spaces rather than closed convex sets. 

Let U and V be Banach spaces. 

        K and M be non-empty close convex subsets of 

        U and V, respectively and L: K x M ---> R a real functional defined on K x M. 

We recall that a pair (u,p ) є K  x M is a saddle point of  L if and only if 

L ( u,q ) ≤ L (u,p ) ≤ L (v,p ) , for all v є K, q є M           (1)                                                                            

The functional L possesses a saddle point if                    (2) 

Max inf L ( v,q ) = min sup L (v ,q )                                                                                                           

q є m v є K                v є K q є M 

         We will be primarily concerned with cases in which the following conditions hold: 

For all q є M, v -->L (v , q) is G – differentiable           3  (a)                                                                               

For all v є K, Q --> L (v , q) is G – differentiable          3 (b)                                                                             

For all q є M, v --> L (v , q) is strictly convex               3 (c) 

(and therefore  weakly lower semi continuous )                                                                                        

For all v є K , q --> ( v ,q ) is concave and upper semi continuous.        3 (d)                                                   
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We have the following theorems on the existence and characterization of saddle point. 

3.2 Theorem (1) : Let condition (3a) hold. In addition suppose that either K and M are 

bounded or L is coercive in the following sense: 

q˳ є M such that  

Lim 

║ v ║ u ---> ∞ L (v,qu)= +∞                                            (4) 

  and  vo є K such that 

 

Lim    

║ q ║ v --->∞ L(vo,q) = -   ∞                                         (5)                                                                                                             

Then there exists a saddle point (u,p) є K x M of L.  

Moreover, 

L(U,P)= min sup L(v,q)= max inf L (v,q)                     (6)                                                                                             

              vєK qєM                 qєM vєK 

3.3 Theorem (2): Let (3a) and (3b) hold and also let 

 : K x M --> R be such that for all  

VєK , q --> L (v,q) 

is concave and for all q єM, v--> L (v,q) is convex. Then, If (u,p) is a saddle point of the 

functional L, it is a characterized by the pair of variational  inequalities. 

 , v-u >u+φ(v,p)- φ(u,p)≥0 for all vєK 

 , q-p >u+φ(u,q)- φ(u,p)≤0 for all qєM                (7)                                                                                            

Where< .,. >u  and < .,. >v  denote duality pairing on U’ x U and V’ x V, respectively , and 

     and    denote the gradients of L with respect to v and q for fixed q and v, 

respectively. 

  Remark (1): Let us now return to the minimization problem of finding u in a non-empty 

closed convex set K Such that 

                   Inf F (v)=F(u)                                            (8)                                                                                  

                   V є K 

We will reformulate this problem using Lagrange multipliers for the case in which 

        K={vєU : B(v)=0}                                               (9)                                                                                    
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Where B is an operator mapping U into the dual V’ of reflexive Banach space V.  Towards 

this end, we introduce the Lagrangian L: U x V->R     defined by 

            L(v.q)=F(v)+<B(v),q>v                                   (10)                                                                                     

We will make the following assumptions on F and B: 

     F : U --> R is G-differentiable , coercive ,strictly convex and its gradient DF is bounded, 

     B : U --> V’ is weakly sequentially continuous  

V --> <B (u), q>v  is G-differentiable and 

u=c(u)v,q  

Where C : U x V--> U’, C*: UxU--> V’                          (11)                                                                             

Remark (2): Returning to theorem (1) and particularly conditions (3), 

 we see that all of the conditions of that theorem are met except (5) 

To ensure that (5) be also satisfied, it is customary to introduce a Perturbed lagrangian 

L(v,q) = L(v.q) – є|| q || v                                                     (12)                                                             

Where є is an arbitrary positive number, we easily verify that all of the conditions of  theorem 

(7) are met by Lє. 

Thus, for each є>0 , there exists a saddle point (uє,pє) є U X V  i.e., 

Lє(uє,q)  ≤ Lє(uє,pє )≤Lє(v,pє), for all vєU, qєV                   (13)                                                                

Moreover, since F is coercive, the sequence ||uє|| is uniformly bounded in є, 

Since U is reflexive, there exists a subsequence, also denoted by uє and an element uєU such 

that  

U --> weakly in U                                                                (14)                                                                        

In addition, it can be also shown that the limit is u is a solution of the original minimization 

problem (8). 

An additional condition is needed to guarantee the existence of a pєv such that Pє --> P 

weakly in V. To arrive at a suitable condition on  Pє,  let us denote 

     

Then saddle points of the perturbed Lagrangian L є of (12) are characterized by                       

DF (uє ), V>U+<C(uє) Pє  , V>U=0 , for all vєU <B(uє), q>v –є <є (Pє),q>v=0 , for all qє V  

(15)                             

Let us suppose that a constant α0>0 exists independent of є , such that  
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                                           (16)                                                                               

Since DF is assumed to be bounded, we have from (15) 

|< C (uє) Pє.V>U |=| <DF (uє), V>U|< C||V||U(C=constant) 

Hence, if (16) holds, 

αo||Pє|| V≤C 

i.e. the sequence Pє is uniformly bounded in є and , therefore had a sequence Pє which 

converges weakly to an element p in V as є --> 0. The limit (u,p) of the  subsequence (uє,pє) 

of solutions of (15) is a saddle point of the original functional L of (10) 

3.4 Advance Penalty Methods 

Penalty methods provide an alternative approach to constrained optimization problems 

without the necessity of introducing additional unknowns in the form of Lagrange 

multipliers. Suppose that we wish to minimize F:U--> subject to the constraint that the 

minimizers u belong to a convex set KU. The idea behind penalty methods is roughly 

speaking to apprehend to Fa penalty functional P which increases in magnitude according to 

how severly the constraint is violated . In other words , the more a candidate (minimize) vєU 

violates the constraint , the greater the penalty we must pay . Let F be a coercive weakly 

lower semi-continuous functional defined on a reflexive Banach space U  and again denoted 

by K a non –empty closed convex subset of U . We seek minimizers of F in K . The penalty 

method for this problem consists of introducing a new functional , Fє  , depending on a real 

parameter є > 0, of the form. 

Fє(v) = F(v)+1/ є P(v)                                                                 (17)                                                                  

 where P : U ---> R is a penalty functional satisfying the condition 

P : U ---> R is weakly lower semi-continuous                            (18) 

P(v) > o,p(v) = o iff v є K 

In most instances, we also except P to satisfy 

P is G – differentiable on U                                                         (19) 

The  functional F is defined on all of U, in view of the properties of F and P,F is coercive and 

weakly lower semi-continuous. Hence, in accordance with theorem 

 for each є > o there exists a uє U which minimizes F є                                       

inf є (v) = F(uє)                                                                             (20)                                                    

Moreover, if F and P are G-differentiable, uє is charactetize and by 
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< DF (uє), V>U+1/ є < DP(uє), v > u  = 0, for all v є U               (21)                                                                  

The question, of course, is whether or not the solutionUє of (20) (or 21) generate to a 

sequence Uє which converges to a solution u of the original minimization problem. This is 

easily resolved. Since uє minimizes Fє 

       F(uє)+1/є – P(uє) ≤ F(v)+1/ є – P(v),for all v є U. 

If vє K, P(v) = 0 and since (1/ є) p (uє) ≥ 0 we have 

                 F(uє) ≤ F(v)                                                                   (22)                                                              

If ( uє) denotes a sequence of solutions of (20) obtained as є ---> 0 the fact that F is coercive   

Implies that a xonstant C>0 exists , independent of є , such that ||uє||<C. Since u is reflexive , 

this guarantee the existence , of a subsequence m also denoted uє , such that uєu  weakly in 

U. Finally , we use the weak lower semi continuity of F and P to obtain  

lim inf F (uє)>lim inf F(uє)>F (u). 

In summary , we have proved. 

3.5 Theorem (3) : Let F : UR be coercive and weakly lower semicontinuous , K be a non-

empty , closed convex subset of the reflexive Banach space U , and P : UR a penalty 

functional satisfying (18). Then for every є>0, there exists a solution { Uє } to (20), in 

additional , there exists a subsequence { uє } of such solution which converges weakly to 

uєU, where  

F(u)≤ inf F(V) 

Moreover , if F and P are G-differentiable , then U satisfy (21) for each є>0 and the limit u 

satisfies the variational inequality. 

<DF(u),v-u>U≥ 0, for all vє K                                                    (23)                                                                                         

Remarks (3) : Suppose that the penalty functional P satisfies (18) and (19) and that P is the 

composition of the operators , P= j O B, B : UV-,J: R(B)R where B is the operator 

defining the constraint set .  

CONCLUSION 

 This paper presents the study of advance method for solution of constraint optimization 

problem. We discuss different optimization methods Branch & bound method, Distributed 

constraint optimization, Penalty function method, Barrier methods & Karush–Kuhn–Tucker 

(KKT) conditions for equality & inequality constraints.  

 Saddle points, Lagrange Multipliers and Penalty methods for solving Constrained 

Optimization problems have been analyzed with different examples. It is observed that 

http://en.wikipedia.org/wiki/Barrier_method_(mathematics)
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penalty function methods are more acceptable for analyzing problems of almost all types 

appearing in operational research.  
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